Step of Proof: p-compose_wf
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
p-compose
wf
:
1.
A
: Type
2.
B
: Type
3.
C
: Type
4.
g
:
A
(
B
+ Top)
5.
B
(
C
+ Top)
6.
x
:
A
7.
(
can-apply(
g
;
x
))
g
(
x
)
(
C
+ Top)
latex
by ((MoveToConcl (-1))
CollapseTHEN (((Unfold `can-apply` ( 0)
)
CollapseTHEN (((((
C
GenConclAtAddr [1;1;1;1])
CollapseTHENA (Auto
))
)
C
CollapseTHEN (((D (-2)
)
C
CollapseTHEN (((
CC
Reduce 0)
C
CollapseTHEN (Auto
))
))
))
))
))
latex
CC
.
Definitions
can-apply(
f
;
x
)
,
inl
x
,
True
,
b
,
P
Q
,
Decision
,
,
left
+
right
,
f
(
a
)
,
inr
x
,
Top
,
Type
,
A
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
False
,
t
T
,
s
=
t
Lemmas
top
wf
,
member
wf
,
true
wf
,
not
wf
,
false
wf
origin